Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.821 IF 2.821
  • IF 5-year<br/> value: 3.048 IF 5-year
  • CiteScore<br/> value: 2.90 CiteScore
  • SNIP value: 1.191 SNIP 1.191
  • SJR value: 1.885 SJR 1.885
  • IPP value: 2.589 IPP 2.589
  • h5-index value: 25 h5-index 25
Ocean Sci., 7, 429-444, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
20 Jun 2011
A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation
D. N. Arabelos, D. Z. Papazachariou, M. E. Contadakis, and S. D. Spatalas Department of Geodesy and Surveying, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Abstract. The tides for the Mediterranean Sea are described through a high resolution model (MEDI10) developed by assimilation of tide-gauge data and T/P data into a barotropic ocean tide model. Tidal parameters from 56 coastal tide-gauge stations around the Mediterranean for eight principal constituents: M2, S2, N2, K2, K1, O1, P1 and Q1 and from 20 stations for M2, S2, K1, O1 are included in the model. TOPEX/Poseidon data with all corrections applied except for the ocean tides and bathymetry from TOPO 13.1 were used for development of the model. Numerical experiments were carried out for the estimation of the friction velocity and of the decorrelation length scale. The experiments related to the friction velocity showed that the use of spatially varying friction velocity, estimated as a function of position in the model domain, gives better results than a constant value. The experiments related to the estimation of the decorrelation length suggest that the results are not sensitive for lengths close to ten times the length of the grid cell. The assessment of the model is based on ten tide-gauge observations that are not used for the assimilation. Comparisons were carried out with contemporary published global or regional models. The final solution is computed using 76 selected coastal tide-gauge stations. The comparison between the observed and the model constituents results in a Root Sum of Squares (RSS) equal to 1.3 cm.

Citation: Arabelos, D. N., Papazachariou, D. Z., Contadakis, M. E., and Spatalas, S. D.: A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation, Ocean Sci., 7, 429-444, doi:10.5194/os-7-429-2011, 2011.
Publications Copernicus