Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year 2.756
  • CiteScore value: 2.76 CiteScore 2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H index value: 41 Scimago H index 41
Volume 11, issue 2 | Copyright
Ocean Sci., 11, 237-249, 2015
https://doi.org/10.5194/os-11-237-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Mar 2015

Research article | 11 Mar 2015

Constraining energetic slope currents through assimilation of high-frequency radar observations

A. K. Sperrevik, K. H. Christensen, and J. Röhrs A. K. Sperrevik et al.
  • Norwegian Meteorological Institute, Oslo, Norway

Abstract. Assimilation of high-frequency (HF) radar current observations and CTD hydrography is performed with the 4D-Var analysis scheme implemented in the Regional Ocean Modeling System (ROMS). We consider both an idealized case, with a baroclinic slope current in a periodic channel, and a realistic case for the coast of Vesterålen in northern Norway. In the realistic case, the results of the data assimilation are compared with independent data from acoustic profilers and surface drifters. Best results are obtained when background error correlation scales are small (10 km or less) and when the data assimilation window is short, i.e. about 1 day. Furthermore, we find that the impact of assimilating HF radar currents is generally larger than the impact of CTD hydrography. However, combining the HF radar currents with a few hydrographic profiles gives significantly better results, which demonstrates the importance of complementing surface observations with observations of the vertical structure of the ocean.

Publications Copernicus
Download
Citation
Share