Articles | Volume 11, issue 1
https://doi.org/10.5194/os-11-33-2015
https://doi.org/10.5194/os-11-33-2015
Research article
 | 
09 Jan 2015
Research article |  | 09 Jan 2015

Modelling of underwater light fields in turbid and eutrophic waters: application and validation with experimental data

B. Sundarabalan and P. Shanmugam

Abstract. A reliable radiative transfer (RT) model is an essential and indispensable tool for understanding the radiative transfer processes in homogenous and layered waters, analyzing measurements made by radiance sensors and developing remote-sensing algorithms to derive meaningful physical quantities and biogeochemical variables in turbid and productive coastal waters. Existing radiative transfer models have been designed to be applicable to either homogenous waters or inhomogeneous waters. To overcome such constraints associated with these models, this study presents a radiative transfer model that treats a homogenous layer as a diffuse part and an inhomogeneous layer as a direct part in the water column and combines these two parts appropriately in order to generate more reliable underwater light-field data such as upwelling radiance (Lu), downwelling irradiance (Ed) and upwelling irradiance (Eu). The diffuse model assumes the inherent optical properties (IOPs) to be vertically continuous and the light fields to exponentially decrease with depth, whereas the direct part considers the water column to be vertically inhomogeneous (layer-by-layer phenomena) with the vertically varying phase function. The surface and bottom boundary conditions, source function due to chlorophyll and solar incident geometry are also included in the present RT model. The performance of this model is assessed in a variety of waters (clear, turbid and eutrophic) using the measured radiometric data. The present model shows an advantage in terms of producing accurate Lu, Ed and Eu profiles (in spatial domain) in different waters determined by both homogenous and inhomogeneous conditions. The feasibility of predicting these underwater light fields based on the remotely estimated IOP data is also examined using the present RT model. For this application, vertical profiles of the water constituents and IOPs are estimated by empirical models based on our in situ data. The present RT model generates Lu, Ed and Eu spectra closely consistent with the measured data. These results lead to a conclusion that the present RT model is a viable alternative to existing RT models and has an important implication for remote sensing of optically complex waters.

Download
Short summary