Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
  • CiteScore value: 2.78 CiteScore
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Volume 11, issue 3 | Copyright
Ocean Sci., 11, 483-502, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jun 2015

Research article | 30 Jun 2015

Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation

N. Tim, E. Zorita, and B. Hünicke N. Tim et al.
  • Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany

Abstract. Detecting the atmospheric drivers of the Benguela upwelling systems is essential to understand its present variability and its past and future changes. We present a statistical analysis of a high-resolution (0.1°) ocean-only simulation driven by observed atmospheric fields over the last 60 years with the aim of identifying the large-scale atmospheric drivers of upwelling variability and trends. The simulation is found to reproduce well the seasonal cycle of upwelling intensity, with a maximum in the June–August season in North Benguela and in the December–February season in South Benguela. The statistical analysis of the interannual variability of upwelling focuses on its relationship to atmospheric variables (sea level pressure, 10 m wind, wind stress). The relationship between upwelling and the atmospheric variables differ somewhat in the two regions, but generally the correlation patterns reflect the common atmospheric pattern favouring upwelling: southerly wind/wind stress, strong subtropical anticyclone, and an ocean–land sea level pressure gradient. In addition, the statistical link between upwelling and large-scale climate variability modes was analysed. The El Niño–Southern Oscillation and the Antarctic Oscillation exert some influence on austral summer upwelling velocities in South Benguela. The decadal evolution and the long-term trends of simulated upwelling and of ocean-minus-land air pressure gradient do not agree with Bakun's hypothesis that anthropogenic climate change should generally intensify coastal upwelling.

Publications Copernicus
Short summary
The atmospheric drivers of the Benguela upwelling systems and its variability are statistically analysed with an ocean-only simulation over the last decades. Atmospheric upwelling-favourable conditions are southerly wind/wind stress, a strong subtropical anticyclone, and an ocean-land sea level pressure gradient as well as a negative ENSO and a positive AAO phase. No long-term trends of upwelling and of ocean-minus-land air pressure gradients, as supposed by Bakun, can be seen in our analysis.
The atmospheric drivers of the Benguela upwelling systems and its variability are statistically...