Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year 2.756
  • CiteScore value: 2.76 CiteScore 2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H index value: 41 Scimago H index 41
Volume 11, issue 4
Ocean Sci., 11, 519-541, 2015
https://doi.org/10.5194/os-11-519-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Air-sea flux climatology; progress and future prospects (BG/ACP/OS...

Ocean Sci., 11, 519-541, 2015
https://doi.org/10.5194/os-11-519-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Jul 2015

Research article | 08 Jul 2015

The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies

L. M. Goddijn-Murphy1, D. K. Woolf2, P. E. Land3, J. D. Shutler4, and C. Donlon5 L. M. Goddijn-Murphy et al.
  • 1ERI, University of the Highlands and Islands, Ormlie Road, Thurso, UK
  • 2ICIT, Heriot-Watt University, Stromness, UK
  • 3Plymouth Marine Laboratory, Prospect Place, Plymouth, UK
  • 4University of Exeter, Centre for Geography, Environment and Society, Penryn, Cornwall, UK
  • 5European Space Agency/ESTEC, Noordwijk, the Netherlands

Abstract. Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air–sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air–sea CO2 flux, and hence the presented fCO2 distributions can be used in air–sea gas flux calculations together with climatologies of other climate variables.

Publications Copernicus
Special issue
Download
Short summary
We describe the OceanFlux Greenhouse Gases methodology for creating an ocean surface CO2 climatology. In situ measurements valid for instantaneous sea surface temperature (SST) were recomputed using a more consistent and averaged SST. The results were normalised to year 2010, averaged by month, and interpolated onto a global 1°×1° grid. The 12 monthly distributions of ocean surface CO2 (see supplement) can be used in air-sea gas flux calculations together with climatologies of other variables.
We describe the OceanFlux Greenhouse Gases methodology for creating an ocean surface CO2...
Citation
Share