Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Ocean Sci., 12, 663-685, 2016
https://doi.org/10.5194/os-12-663-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 May 2016
Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean
Florian Schütte1, Peter Brandt1,2, and Johannes Karstensen1 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
2Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Abstract. Coherent mesoscale features (referred to here as eddies) in the tropical northeastern Atlantic Ocean (between 12–22° N and 15–26° W) are examined and characterized. The eddies' surface signatures are investigated using 19 years of satellite-derived sea level anomaly (SLA) data. Two automated detection methods are applied, the geometrical method based on closed streamlines around eddy cores, and the Okubo–Weiß method based on the relation between vorticity and strain. Both methods give similar results. Mean eddy surface signatures of SLA, sea surface temperature (SST) and sea surface salinity (SSS) anomalies are obtained from composites of all snapshots around identified eddy cores. Anticyclones/cyclones are identified by an elevation/depression of SLA and enhanced/reduced SST and SSS in their cores. However, about 20 % of all anticyclonically rotating eddies show reduced SST and reduced SSS instead. These kind of eddies are classified as anticyclonic mode-water eddies (ACMEs). About 146 ± 4 eddies per year with a minimum lifetime of 7 days are identified (52 % cyclones, 39 % anticyclones, 9 % ACMEs) with rather similar mean radii of about 56 ± 12 km. Based on concurrent in situ temperature and salinity profiles (from Argo float, shipboard, and mooring data) taken inside of eddies, distinct mean vertical structures of the three eddy types are determined. Most eddies are generated preferentially in boreal summer and along the West African coast at three distinct coastal headland regions and carry South Atlantic Central Water supplied by the northward flow within the Mauretanian coastal current system. Westward eddy propagation (on average about 3.00 ± 2.15 km d−1) is confined to distinct zonal corridors with a small meridional deflection dependent on the eddy type (anticyclones – equatorward, cyclones – poleward, ACMEs – no deflection). Heat and salt fluxes out of the coastal region and across the Cape Verde Frontal Zone, which separates the shadow zone from the ventilated subtropical gyre, are calculated.

Citation: Schütte, F., Brandt, P., and Karstensen, J.: Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean, Ocean Sci., 12, 663-685, https://doi.org/10.5194/os-12-663-2016, 2016.
Publications Copernicus
Download
Short summary
We want to examine the characteristics of mesoscale eddies in the tropical northeastern Atlantic. They serve as transport agents, exporting water from the coast into the open ocean. Traditionally eddies are categorized with respect to their rotation: cyclonic and anticyclonic. But we could identify, with a combination of different satellite products, a third type called "anticyclonic mode-water eddy" transporting much larger anomalies. We propose a distinction into three classes for further studies.
We want to examine the characteristics of mesoscale eddies in the tropical northeastern...
Share