Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year 2.756
  • CiteScore value: 2.76 CiteScore 2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H index value: 41 Scimago H index 41
Volume 13, issue 2 | Copyright
Ocean Sci., 13, 223-234, 2017
https://doi.org/10.5194/os-13-223-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Mar 2017

Research article | 29 Mar 2017

On the mesoscale monitoring capability of Argo floats in the Mediterranean Sea

Antonio Sánchez-Román1, Simón Ruiz1, Ananda Pascual1, Baptiste Mourre2, and Stéphanie Guinehut3 Antonio Sánchez-Román et al.
  • 1Mediterranean Institute for Advanced Studies (IMEDEA), CSIC-UIB, Mallorca, Spain
  • 2Balearic Islands Coastal Observing and Forecasting System (SOCIB), Mallorca, Spain
  • 3Collecte Localisation Satellites (CLS), Environmental Monitoring, Ramonville Saint-Agne, France

Abstract. In this work a simplified observing system simulation experiment (OSSE) approach is used to investigate which Argo design sampling in the Mediterranean Sea would be necessary to properly capture the mesoscale dynamics in this basin. The monitoring of the mesoscale features is not an initial objective of the Argo network. However, it is an interesting question from the perspective of future network extensions in order to improve the ocean state estimates. The true field used to conduct the OSSEs is provided by a specific altimetry-gridded merged product for the Mediterranean Sea. Synthetic observations were obtained by sub-sampling this Nature Run according to different configurations of the ARGO network. The observation errors required to perform the OSSEs were obtained through the comparison of sea level anomalies (SLAs) from altimetry and dynamic height anomalies (DHAs) computed from the real in situ Argo network. This analysis also contributes to validate satellite SLAs with an increased confidence. The simulation experiments show that a configuration similar to the current Argo array in the Mediterranean (with a spatial resolution of 2° × 2°) is only able to recover the large-scale signals of the basin. Increasing the spatial resolution to nearly 75km × 75km, allows the capture of most of the mesoscale signal in the basin and to retrieve the SLA field with a RMSE of 3cm for spatial scales larger than 150km, similar to those presently captured by the altimetry. This would represent a theoretical reduction of 40% of the actual RMSE. Such a high-resolution Argo array composed of around 450 floats, cycling every 10 days, is expected to increase the actual network cost by approximately a factor of 6.

Publications Copernicus
Download
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture...
Citation
Share