Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Volume 13, issue 2
Ocean Sci., 13, 289–301, 2017
https://doi.org/10.5194/os-13-289-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ocean Sci., 13, 289–301, 2017
https://doi.org/10.5194/os-13-289-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Apr 2017

Research article | 13 Apr 2017

An atmosphere–wave regional coupled model: improving predictions of wave heights and surface winds in the southern North Sea

Kathrin Wahle1, Joanna Staneva1, Wolfgang Koch1, Luciana Fenoglio-Marc2, Ha T. M. Ho-Hagemann1, and Emil V. Stanev1 Kathrin Wahle et al.
  • 1Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
  • 2Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

Abstract. The coupling of models is a commonly used approach when addressing the complex interactions between different components of earth systems. We demonstrate that this approach can result in a reduction of errors in wave forecasting, especially in dynamically complicated coastal ocean areas, such as the southern part of the North Sea – the German Bight. Here, we study the effects of coupling of an atmospheric model (COSMO) and a wind wave model (WAM), which is enabled by implementing wave-induced drag in the atmospheric model. The numerical simulations use a regional North Sea coupled wave–atmosphere model as well as a nested-grid high-resolution German Bight wave model. Using one atmospheric and two wind wave models simultaneously allows for study of the individual and combined effects of two-way coupling and grid resolution. This approach proved to be particularly important under severe storm conditions as the German Bight is a very shallow and dynamically complex coastal area exposed to storm floods. The two-way coupling leads to a reduction of both surface wind speeds and simulated wave heights. In this study, the sensitivity of atmospheric parameters, such as wind speed and atmospheric pressure, to the wave-induced drag, in particular under storm conditions, and the impact of two-way coupling on the wave model performance, is quantified. Comparisons between data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justify its implementation for both operational and climate simulations.

Publications Copernicus
Download
Short summary
Reduction of wave forecasting errors is a challenge, especially in dynamically complicated coastal ocean areas such as the southern part of the North Sea area. We study the effects of coupling between an atmospheric and two nested-grid wind wave models. Comparisons with data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justifies its implementation for both operational and climate simulation.
Reduction of wave forecasting errors is a challenge, especially in dynamically complicated...
Citation