Articles | Volume 13, issue 4
https://doi.org/10.5194/os-13-589-2017
https://doi.org/10.5194/os-13-589-2017
Research article
 | 
20 Jul 2017
Research article |  | 20 Jul 2017

The “shallow-waterness” of the wave climate in European coastal regions

Kai Håkon Christensen, Ana Carrasco, Jean-Raymond Bidlot, and Øyvind Breivik

Related authors

Ocean wave tracing v.1: a numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023,https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023,https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modelling system
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019,https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Constraining energetic slope currents through assimilation of high-frequency radar observations
A. K. Sperrevik, K. H. Christensen, and J. Röhrs
Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015,https://doi.org/10.5194/os-11-237-2015, 2015
Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed
T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. H. Christensen, and E. S. Saltzman
Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013,https://doi.org/10.5194/acp-13-11073-2013, 2013

Cited articles

Aarnes, O. J., Breivik, Ø., and Reistad, M.: Wave extremes in the Northeast Atlantic, J. Clim., 25, 1529–1543, https://doi.org/10.1175/JCLI-D-11-00132.1, 2012.
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P., Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical wave modeling in conditions with strong currents: dissipation, refraction, and relative wind, J. Phys. Oceanogr., 42, 2101–2120, https://doi.org/10.1175/JPO-D-11-0220.1, 2012.
Bidlot, J.-R.: Grib and ASCII data, subset ERA-I for shallow water waves Ocean Science study [Data set], Zenodo, https://doi.org/10.5281/zenodo.831329, 2017.
Boukhanovsky, A. V., Lopatoukhin, L. J., and Guedes Soares, C.: Spectral wave climate of the North Sea, Appl. Ocean Res., 29, 146–154, https://doi.org/10.1016/j.apor.2007.08.004, 2007.
Dee, D., Uppala, S., Simmons, A. et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Download
Short summary
In this note we investigate when and where we would expect the bottom to influence the dynamics of surface waves. In deep water, where the presence of the bottom is not felt by the waves, modelers can use a simpler description of wave-mean flow interactions; hence, the results are relevant for coupled wave-ocean modeling systems. The most pronounced influence is on the Northwest Shelf during winter, and can sometimes be significant even far from the coast.