Articles | Volume 14, issue 2
https://doi.org/10.5194/os-14-259-2018
https://doi.org/10.5194/os-14-259-2018
Research article
 | 
03 Apr 2018
Research article |  | 03 Apr 2018

Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

Kumar Ravi Prakash, Tanuja Nigam, and Vimlesh Pant

Cited articles

Alam, M. M., Hossain, M. A., and Shafee, S.: Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones, Int. J. Climatol., 23, 1119–1125, https://doi.org/10.1002/joc.927, 2003. 
Alford, M. H. and Gregg, M. C.: Near-inertial mixing: modulation of shear, strain and microstructure at low latitude, J. Geophys. Res., 106, 16947–16968, 2001. 
Auger, F. and Flandrin, P.: Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method, IEEE Transactions on Signal Processing, 43, 1068–1089, 1995. 
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions, Part I, Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. 
Burchard, H. and Rippeth, T. P.: Generation of bulk shear spikes in shallow stratified tidal seas, J. Phys. Oceanogr., 39, 969–985, 2009. 
Download
Short summary
Parameters at the sea surface are determined by the air–sea fluxes of heat, salt, and momentum. Surface wind speed drives the oceanic surface circulation and mixing of temperature and salinity up to a certain depth (mixed layer depth) from the sea surface. In this study, we examined the oceanic mixing process using numerical models under strong cyclonic winds. Results highlight the important role of inertial oscillations in subsurface mixing.