Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
OS | Articles | Volume 14, issue 3
Ocean Sci., 14, 515–524, 2018
https://doi.org/10.5194/os-14-515-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Ocean Sci., 14, 515–524, 2018
https://doi.org/10.5194/os-14-515-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jun 2018

Research article | 25 Jun 2018

Electromagnetic characteristics of ENSO

Johannes Petereit et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Johannes Petereit on behalf of the Authors (23 May 2018)  Author's response    Manuscript
ED: Publish as is (30 May 2018) by Neil Wells
Publications Copernicus
Download
Short summary
The study finds that changes in seawater temperature due to El Niño and La Niña, anomalous warm and cold events, are in principle detectable by means of the oceanic tidally induced magnetic field. Furthermore, subsurface processes in the onset of those anomalous events lead the surface processes by several months. This causes a lead in the oceanic tidally induced magnetic field signals over sea-surface temperature signals.
The study finds that changes in seawater temperature due to El Niño and La Niña, anomalous warm...
Citation