Cai, H., Savenije, H. H. G., and Toffolon, M.: A new analytical framework for
assessing the effect of sea-level rise and dredging on tidal damping in
estuaries, J. Geophys. Res., 117, C09023, https://doi.org/10.1029/2012JC008000, 2012. a

Cai, H., Toffolon, M., and Savenije, H. H. G.: Analytical investigation of
superposition between predominant *M*_{2} and other tidal constituents in
estuaries, in: Proceedings of 36th IAHR World Congress, Delft – The Hague, 2015. a, b

Cai, H., Toffolon, M., and Savenije, H. H. G.: An Analytical Approach to
Determining Resonance in Semi-Closed Convergent Tidal Channels, Coast Eng. J.,
58, 1650009, https://doi.org/10.1142/S0578563416500091, 2016. a

Diez-Minguito, M., Baquerizo, A., Ortega-Sanchez, M., Navarro, G., and Losada,
M. A.: Tide transformation in the Guadalquivir estuary (SW Spain) and
process-based zonation, J. Geophys. Res., 117, C03019, https://doi.org/10.1029/2011jc007344, 2012. a, b, c, d

Doodson, A. T.: Perturbations of Harmonic Tidal Constants, in: vol. 106 of 739,
Proceedings of the Royal Society, London, 513–526, 1924. a

Dronkers, J. J.: Tidal computations in River and Coastal Waters, Elsevier, New York, 1964. a, b, c

Fang, G.: Nonlinear effects of tidal friction, Acta Oceanol. Sin., 6, 105–122, 1987. a, b, c, d

Garel, E.: Guadiana River estuary – Investigating the past, present and future,
in: Present Dynamics of the Guadiana Estuary, edited by: Moura, D., Gomes, A.,
Mendes, I., and Anibal, J., University of Algarve, Faro, Portugal, 15–37, 2017. a, b, c

Garel, E. and Cai, H.: Effects of Tidal-Forcing Variations on Tidal Properties
Along a Narrow Convergent Estuary, Estuar. Coast, https://doi.org/10.1007/s12237-018-0410-y, in press, 2018. a, b, c

Garel, E. and Ferreira, O.: Fortnightly changes in water transport direction
across the mouth of a narrow estuary, Estuar. Coast, 36, 286–299, https://doi.org/10.1007/s12237-012-9566-z, 2013. a

Garel, E., Pinto, L., Santos, A., and Ferreira, O.: Tidal and river discharge
forcing upon water and sediment circulation at a rock-bound estuary (Guadiana
estuary, Portugal), Estuar. Coast. Shelf S., 84, 269–281, https://doi.org/10.1016/j.ecss.2009.07.002, 2009. a

Godin, G.: Compact Approximations to the Bottom Friction Term, for the Study
of Tides Propagating in Channels, Cont. Shelf Res., 11, 579–589, https://doi.org/10.1016/0278-4343(91)90013-V, 1991. a, b, c, d, e

Godin, G.: The propagation of tides up rivers with special considerations on
the upper Saint Lawrence river, Estuar. Coast. Shelf S., 48, 307–324,
https://doi.org/10.1006/ecss.1998.0422, 1999. a, b, c, d, e, f

Heaps, N. S.: Linearized vertically-integrated equation for residual circulation
in coastal seas, Dtsch. Hydrogr. Z., 31, 147–169, https://doi.org/10.1007/BF02224467, 1978. a

Inoue, R. and Garrett, C.: Fourier representation of quadratic friction, J.
Phys. Oceanogr., 37, 593–610, https://doi.org/10.1175/Jpo2999.1, 2007. a, b, c, d, e

Jeffreys, H.: The Earth: Its Origin, History and Physical Constitution, 5th Edn.,
Cambridge University Press, Cambridge, UK, 1970. a

Kabbaj, A. and Le Provost, C.: Nonlinear tidal waves in channels: a perturbation
method adapted to the importance of quadratic bottom friction, Tellus, 32,
143–163, https://doi.org/10.1111/j.2153-3490.1980.tb00942.x, 1980. a

Le Provost, C.: Décomposition spectrale du terme quadratique de frottement
dans les équations des marées littorales, C. R. Acad. Sci. Paris,
276, 653–656, 1973. a, b, c, d

Le Provost, C.: Generation of Overtides and compound tides (review), in: Tidal
Hydrodynamics, edited by: Parker, B., John Wiley and Sons, Hoboken, NJ, 269–295, 1991. a

Le Provost, C. and Fornerino, M.: Tidal spectroscopy of the English Channel
with a numerical model, J. Phys. Oceanogr., 15, 1009–1031, https://doi.org/10.1175/1520-0485(1985)015<1008:TSOTEC>2.0.CO;2, 1985. a

Le Provost, C., Rougier, G., and Poncet, A.: Numerical modeling of the harmonic
constituents of the tides, with application to the English Channel, J. Phys.
Oceanogr., 11, 1123–1138, https://doi.org/10.1175/1520-0485(1981)011<1123:NMOTHC>2.0.CO;2, 1981. a

Lorentz, H. A.: Verslag Staatscommissie Zuiderzee, Tech. rep., Algemene
Landsdrukkerij, the Hague, the Netherlands, 1926. a

Molines, J. M., Fornerino, M., and Le Provost, C.: Tidal spectroscopy of a
coastal area: observed and simulated tides of the Lake Maracaibo system, Cont.
Shelf Res., 9, 301–323, https://doi.org/10.1016/0278-4343(89)90036-8, 1989. a

Parker, B. B.: The relative importance of the various nonlinear mechanisms in
a wide range of tidal interactions, in: Tidal Hydrodynamics, edited by: Parker,
B., John Wiley and Sons, Hoboken, NJ, 237–268, 1991. a

Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using T-TIDE, Comput. Geosci., 28, 929–937,
https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. a

Pingree, R. D.: Spring Tides and Quadratic Friction, Deep-Sea Res. Pt. A, 30,
929–944, https://doi.org/10.1016/0198-0149(83)90049-3, 1983. a, b, c, d, e

Prandle, D.: The influence of bed friction and vertical eddy viscosity on tidal
propagation, Cont. Shelf Res., 17, 1367–1374, https://doi.org/10.1016/S0278-4343(97)00013-7, 1997. a

Proudman, J.: Dynamical oceanography, Methuen, London, 1953. a, b

Savenije, H. H. G., Toffolon, M., Haas, J., and Veling, E. J. M.: Analytical
description of tidal dynamics in convergent estuaries, J. Geophys. Res., 113,
C10025, https://doi.org/10.1029/2007JC004408, 2008.
a

Schuttelaars, H. M., de Jonge, V. N., and Chernetsky, A.: Improving the
predictive power when modelling physical effects of human interventions in
estuarine systems, Ocean Coast. Manage., 79, 70–82, https://doi.org/10.1016/j.ocecoaman.2012.05.009, 2013. a

Toffolon, M. and Savenije, H. H. G.: Revisiting linearized one-dimensional tidal
propagation, J. Geophys. Res., 116, C07007, https://doi.org/10.1029/2010JC006616, 2011. a, b, c, d

Winterwerp, J. C., Wang, Z. B., van Braeckel, A., van Holland, G., and Kosters,
F.: Man-induced regime shifts in small estuaries – II: a comparison of rivers,
Ocean Dynam., 63, 1293–1306, https://doi.org/10.1007/s10236-013-0663-8, 2013. a