Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year 2.756
  • CiteScore value: 2.76 CiteScore 2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H index value: 41 Scimago H index 41
Volume 14, issue 4 | Copyright
Ocean Sci., 14, 887-909, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Aug 2018

Research article | 27 Aug 2018

What are the prospects for seasonal prediction of the marine environment of the North-west European Shelf?

Jonathan Tinker1, Justin Krijnen1, Richard Wood1, Rosa Barciela1, and Stephen R. Dye2,3 Jonathan Tinker et al.
  • 1Met Office Hadley Centre, Exeter, EX1 3PB, UK
  • 2Cefas, Lowestoft, NR33 0HT, UK
  • 3School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Abstract. Sustainable management and utilisation of the North-west European Shelf (NWS) seas could benefit from reliable forecasts of the marine environment on monthly to seasonal timescales. Recent advances in global seasonal forecast systems and regional marine reanalyses for the NWS allow us to investigate the potential for seasonal forecasts of the state of the NWS.

We identify three possible approaches to address this issue: (A) basing NWS seasonal forecasts directly on output from the Met Office's GloSea5 global seasonal forecast system; (B) developing empirical downscaling relationships between large-scale climate drivers predicted by GloSea5 and the state of the NWS; and (C) dynamically downscaling GloSea5 using a regional model. We show that the GloSea5 system can be inadequate for simulating the NWS directly (approach A). We explore empirical relationships between the winter North Atlantic Oscillation (NAO) and NWS variables estimated using a regional reanalysis (approach B). We find some statistically significant relationships and present a skillful prototype seasonal forecast for English Channel sea surface temperature.

We find large-scale relationships between inter-annual variability in the boundary conditions and inter-annual variability modelled on the shelf, suggesting that dynamic downscaling may be possible (approach C). We also show that for some variables there are opposing mechanisms correlated with the NAO, for which dynamic downscaling may improve on the skill possible with empirical forecasts. We conclude that there is potential for the development of reliable seasonal forecasts for the NWS and consider the research priorities for their development.

Publications Copernicus
Short summary
We consider the prospects for seasonal forecasts for the North-west European Shelf (NWS) seas. The recent maturation of global seasonal forecast systems and NWS marine reanalyses provide a basis for such forecasts. We assess the potential of three possible approaches: direct use of global forecast fields and empirical and dynamical downscaling. We conclude that there is potential for NWS seasonal forecasts and as an example show a skillful prototype SST forecast for the English Channel.
We consider the prospects for seasonal forecasts for the North-west European Shelf (NWS) seas....