Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
OS | Articles | Volume 15, issue 2
Ocean Sci., 15, 291–305, 2019
https://doi.org/10.5194/os-15-291-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Copernicus Marine Environment Monitoring Service (CMEMS):...

Ocean Sci., 15, 291–305, 2019
https://doi.org/10.5194/os-15-291-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Mar 2019

Research article | 22 Mar 2019

Upscaling of a local model into a larger-scale model

Luc Vandenbulcke and Alexander Barth
Viewed  
Total article views: 975 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
765 194 16 975 27 26
  • HTML: 765
  • PDF: 194
  • XML: 16
  • Total: 975
  • BibTeX: 27
  • EndNote: 26
Views and downloads (calculated since 19 Jul 2018)
Cumulative views and downloads (calculated since 19 Jul 2018)
Viewed (geographical distribution)  
Total article views: 806 (including HTML, PDF, and XML) Thereof 804 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 17 Sep 2019
Publications Copernicus
Download
Short summary
In operational oceanography, regional and local models use large-scale models (such as those run by CMEMS) for their initial and/or boundary conditions, but unfortunately there is no feedback that improves the large-scale models. The present study aims at replacing normal two-way nesting by a data assimilation technique. This upscaling method is tried out in the north-western Mediterranean Sea using the NEMO model and shows that the basin-scale model does indeed benefit from the nested model.
In operational oceanography, regional and local models use large-scale models (such as those run...
Citation