Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Volume 6, issue 2
Ocean Sci., 6, 563-572, 2010
https://doi.org/10.5194/os-6-563-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ocean Sci., 6, 563-572, 2010
https://doi.org/10.5194/os-6-563-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  08 Jun 2010

08 Jun 2010

On the numerical resolution of the bottom layer in simulations of oceanic gravity currents

N. Laanaia, A. Wirth, J. M. Molines, B. Barnier, and J. Verron N. Laanaia et al.
  • LEGI/MEOM/CNRS, Laboratoire des Ecoulements Géophysiques et Industriels, UMR 5519, BP 53, 38041 Grenoble cedex 9, France

Abstract. The role of an increased numerical vertical resolution, leading to an explicit resolution of the bottom Ekman layer dynamics, is investigated. Using the hydrostatic ocean model NEMO-OPA9, we demonstrate that the dynamics of an idealised gravity current (on an inclined plane), is well captured when a few (around five) sigma-coordinate levels are added near the ocean floor. Such resolution allows to considerably improve the representation of the descent and transport of the gravity current and the Ekman dynamics near the ocean floor, including the important effect of Ekman veering, which is usually neglected in today's simulations of the ocean dynamics.

Results from high resolution simulations (with σ and z-coordinates) are compared to simulations with a vertical resolution commonly employed in today's ocean models. The latter show a downslope transport that is reduced by almost an order of magnitude and the decrease in the along slope transport is reduced six-fold. We strongly advocate for an increase of the numerical resolution at the ocean floor, similar to the way it is done at the ocean surface and at the lower boundary in atmospheric models.

Publications Copernicus
Download
Citation
Share