Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Volume 7, issue 6
Ocean Sci., 7, 755–770, 2011
https://doi.org/10.5194/os-7-755-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ocean Sci., 7, 755–770, 2011
https://doi.org/10.5194/os-7-755-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Nov 2011

Research article | 14 Nov 2011

An empirical stochastic model of sea-surface temperatures and surface winds over the Southern Ocean

S. Kravtsov1, D. Kondrashov2, I. Kamenkovich3, and M. Ghil2,4 S. Kravtsov et al.
  • 1University of Wisconsin-Milwaukee, Dept. of Mathematical Sciences, Atmospheric Science group, P.O. Box 413, Milwaukee, WI 53201, USA
  • 2University of California at Los Angeles, USA
  • 3University of Miami, USA
  • 4Ecole Normale Supérieure, Paris, France

Abstract. This study employs NASA's recent satellite measurements of sea-surface temperatures (SSTs) and sea-level winds (SLWs) with missing data filled-in by Singular Spectrum Analysis (SSA), to construct empirical models that capture both intrinsic and SST-dependent aspects of SLW variability. The model construction methodology uses a number of algorithmic innovations that are essential in providing stable estimates of the model's propagator. The best model tested herein is able to faithfully represent the time scales and spatial patterns of anomalies associated with a number of distinct processes. These processes range from the daily synoptic variability to interannual signals presumably associated with oceanic or coupled dynamics. Comparing the simulations of an SLW model forced by the observed SST anomalies with the simulations of an SLW-only model provides preliminary evidence for the ocean driving the atmosphere in the Southern Ocean region.

Publications Copernicus
Download
Citation