Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Volume 8, issue 6
Ocean Sci., 8, 983-1000, 2012
https://doi.org/10.5194/os-8-983-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The MyOcean project: scientific advances for operational ocean...

Ocean Sci., 8, 983-1000, 2012
https://doi.org/10.5194/os-8-983-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Nov 2012

Research article | 21 Nov 2012

Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf

K. P. Edwards1,*, R. Barciela1, and M. Butenschön2 K. P. Edwards et al.
  • 1Met Office, Exeter, UK
  • 2Plymouth Marine Laboratory, Plymouth, UK
  • *now at: Environment Agency, Exeter, UK

Abstract. This paper details updates to the Met Office's operational coupled hydrodynamic-ecosystem model from the 7 km Medium-Resolution Continental Shelf – POLCOMS-ERSEM (MRCS-PE) system (Siddorn et al., 2007) to the 7 km Atlantic Margin Model NEMO-ERSEM (AMM7-NE) system. We also provide a validation of the ecosystem component of the new operational system. Comparisons have been made between the model variables and available in situ, satellite and climatological data. The AMM7-NE system has also been benchmarked against the MRCS-PE system. The transition to the new AMM7-NE system was successful and it has been running operationally since March 2012 and has been providing products through MyOcean (http://www.myocean.eu.org) since that time. The results presented herein show the AMM7-NE system performs better than the MRCS-PE system with the most improvement in the model nutrient fields. The problem of nutrient accumulation in the MRCS-PE system appears to be solved in the new AMM7-NE system with nutrient fields improved throughout the domain as discussed in Sect. 4. Improvements in model chlorophyll are also seen but are more modest.

Publications Copernicus
Special issue
Download
Citation
Share