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1. Estimation of numerical derivatives upon Newtorfermula of finite differences

The partial derivatives of complicated functionsynige estimated numerically. One
way is to approximate the function by its collooatpolynomial, upon which the partial
derivatives are deduced. A familiar method to esterthe collocation polynomial is

throughNewton’s formula of finite difference$his method is first presented for the
well-known case of univariate (single variable) tidrderivatives. Afterwards, it is

presented the deduction of the method for the wariite (crossed) partial derivatives.

1.1 Univariate partial derivatives

A function y=f(x) is evaluated at each, wherei equals 0 tdk, with equally spaced
intervals &.1-x=3). They; are recorded and its differences are estimatedygsyi.1-y;
(equation B1). The subsequent higher order diffegsrare also estimated following the
same rule and thua™yi=4™%..:-A™Y,.. From these rules comes thaly=yi. It is
important to notice that in order to estimat€it is necessary to gm steps forward
(k=m). Hence, ifA"y, is solved in order ty it yields Newton’s formulain equation
(B2), for which the column vector within bracketpresentsNewton’s binomialhat
can be estimated as in equation (B3).
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The value of the functiog=f(x) is approximated by the collocation polynomial, @i

in its turn can be estimated froNewton’s formula of finite differencésquation B4).

This polynomial is presented f&>5 and written extensively until the fifth order term

(A%q) in equation (B5).
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Them order partial derivatives of the collocation paymal with respect t& are taken
and afterwards estimated fkx0 (equations B6 to B10 for m=1 to m=5). These aee th
m order partial derivatives g, which approximate then order partial derivatives of
y=f(x) at pointxo.
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The equations presented above are namedotineard formulasas they are obtained
from increasing th& value byd. Below are presented thackwardformulasobtained
from decreasing thevalue bys. They; are recorded and its differences are estimated as
yi-¥i-1 (equation B1ll)Newton’'s backward formulgs given by equation (B12). The
collocation polynomial estimated fromMewton’s backward formulas presented in
equation (B13). It is presented fk¥5 and written extensively until the fifth order term

in equation (B14).
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Them order partial derivatives gf=f(x) at pointxoare approximated by first taking the
m order partial derivatives qfyx with respect te-k and afterwards estimating it fa=0
(equations B15 to B19 for n=1 to n=5). These am lhackward formulasfor the

numerical estimates of the derivatives.
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1.2 Multivariate partial derivatives

This deduction is demonstrated with more detathm bivariate case. Its presentation is
easier whereas the cases with more variables beevitent once the bivariate case is
understood. A functiog=f(x1,X%) is evaluated at each paxi (x.;), wherei equald to k
while j equal9 to| (this is minor letter ‘L’ not to make confusiontwvinumber 1), with
equally spaced intervalgi(+1-x1,=h1 and % j+1-x2 =h). They;; are recorded (equation
B20). This matrix is the ‘ground zero’ of a pile mforder finite differences’ matrices,
wherem equalsO to k. The finite differences are first taken along #alimension so
that A*%; 0=yis1.0-yio and genericallyA™%; 0= A" Y11 -A™ 1% 5. So, each new floor
above has a new matrix formed by subtracting frachdine the preceding line in the
matrix below. This results in a building of finitBfferences between the lines in the

same horizontal plans (equations B21 to B23).



jio 12 |
T XX i Xa0 X Xz - Xa
O XlO i yOO yO,l y02 y0|
1 X, | Yo Yu Yz o Y ‘ground zero’ (B20)
2 X, i Yoo Yo Yoo Yo
e
K X 1 Yo Yea iz Yii
il 1 2 |
XX X Xy Xpp e Xa1__
0 X0 | ALO)/00 Al'0)/0,1 ALO3/02 AJquol
1 X11 i Ny, AN, APy, Ay, ‘I'floor  (B21)
2 X, 1A, Ay, Ay, Ay,
|
|
k=1 X4 iAloyk—l,O Alyoyk—l,l Aloyk—l,z Aloyk—u
i 10 1 2 |
KX X Xy Xoa e Yo
0 Xy | A%y ATy, ATy, A7y,
1 Xy APy, APy, APy, o APy, oo (B22)
2 X, | Ay, By, APy, . By,
|
|
|

k=2 X, : AzYOYk—z,o A2'OY|<—2,1 AZYOYk—z,z AZYOYk—zJ

i 10 1 2 .
|
ToXX 1 X o Xy Xpo - Xy k"floor (B23)
0 Xy |8 Ay APy, .. APy,

Afterwards, the equivalent is done for the differes along the, dimension, resulting
in a building of differences between the columnthim same horizontal plans (equations

B24 to B26). Nevertheless, both buildings sharestirae ‘ground zero’.
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From the orthogonal differences it can be dedubedblique differences by doing first
line-wise and then column-wise or vice-versa. lirgt step it is presented the oblique
differences along the main diagonal. Here, thd brsler oblique difference foy o is

set by starting with the first order vertical @ifénce. This is the finite differences
between lines, or line-wise differences. Afterwardsproceeds to the first order
horizontal (column-wise) difference (equation B2Revertheless, the same result
would be obtained if it had been started the othkay around. Both ways, the final
result is the algorithm essential to define biviariablique differences, present in the

latter development of equation (B27). Starting frtme origin, are identified the size



one steps to all surroundiyg. Then, they;; in the oblique path is added whereasyihe
in the orthonormal paths are subtracted. Its géfena is presented in equation (B28)

and (B29) irrespective whethieequalj or not.
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Once the first order differences have been estaddisboth the orthonormal and the
oblique, the bivariate form of the first ord&lewton’s formulafor the collocation
polynomial can be determined. This is essayedistaftom yp o (equation B30) and

transposed to its general formula (equation B3gspective whetharequalg or not.
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The second order oblique difference appliedideis estimated applying the essential
algorithm in equation (B29) to the ‘first floor’ W the first order oblique differences.
This is in the first development of equation (B3R).the second development it is
solved to they; in the ‘ground zero'. In the third developmenisitwritten in matrix
algebra notation, where the symbol represents thdadamard productThis is the
element-wise product between complementary enine®oth matrices. The third
development is done in order to clearly illustrdite point that takes it to the fourth and
fifth developments. These latter ones are the tibp
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Repeating this exercise to higher order differerieads to the general formula applied
to Yo,0 (equation B33) and tg (equation B34). Notice that, comparing to the anate
situation, the sorting of the sum was reversedsdhtdy, it starts by the closer term and

proceeds towards the term further away. Yet, result equally valid.
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Oblique differences do not necessarily go on a atfifle. This is the same as saying
oblique differences do not necessarily have theesarder vertically and horizontally.
Starting by the first floor with thAl’lyiJ finite differences and differentiating once more
vertically (line-wise), it is obtained tm;ez'lm,j oblique differences. This is illustrated for
the A*'yp in equation (B35). The same result would be okethiii the sequence was
permuted to first line-wise (leading w"%;;) and afterwards obliquely upot'%;;
using the fundamental rule in equation (B29) (legdio A*'y;;). The general case
presented in equation 36 is for all bivariate @ndifferences, horizontal, vertical or
oblique, equal orders or distinct orders. In equa(B37) it is extended for the general

case of all multivariate finite differences with anumber of variables.
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Equation (B37) is the general case when all fidiféerences are estimated forward.
Whenever the finite differences are meant to bemestd backward in a certain
dimension the formula must be updated for that dsi@ according to equation (B38).
However, for computational matters, as softwar@atosupport zero or negative indices

for data arrays, thentj, entry is actually store in array’s cat-jx, with k=0.
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Setting the general rule for any bivariate finitéfeslences is fundamental for the
definition of the bivariate collocation polynomidlhis polynomial, when estimated one
step forward in both directions has vertical, honial and oblique finite differences of
-45° angle (equations B30 and B31). However, whatimated more then one step
forward for both of the directions it also has ghbk finite differences of angles other
than -45°. This is illustrated by its estimatiorotsteps forward (equation B39). The
general rule of this bivariate collocation polynairis presented in equation (B40). It is
anchored toypo and progressem steps in thex; dimension andh steps in thex;

dimension. This is upgraded to its general multatarform (equation B41).
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In order to demonstrate the general principle ueddke the crossed partial derivatives
of the polynomial above, it is first presented disvelopment for the trivariate case
(equation B42).
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The terms of this sum may be displayed in a 3 dsiogral array. Likewise, the terms of

the sum of such type of polynomial with variables may be arranged in an

demonstration the 3 dimensional A array is reardntp equation (B43), where

(ny +2)x(n +1x(3 +1) 5 i 3 matrix for which the entrylm, +1m, +1m,+1 COrresponds to

the finite differenc@™ ™2™ This 3D array is multiplied element-wiselgdamard
produc) by another 3D array created by the polynomiaffaments vector K) applied
to each dimensiong and all multiplied orthogonally as to create thenehsional
expansion to 3D. It is chosen the symbpto represent such multiplication whéei#é

operated byK yields(nl P (g + U (e +2x(n +10  this s operated by
% it yields(”l“Ll)x(nz +LPxLy o X0x(n3 )y (g +2)x(np +2)x(ng +1)y Working with s
variables this multiplication is repeatestl times generating ars-dimensional

arra)an’Ll)x(”2 +apex(ns g ap this step and further on, wherg is meant to be
variable, it is replaced by the similgrvariable. This is done to prevent confusion later
on between wherg, codes for the length of the array along dimensiand wheren
may be replaced b which is coding for the point of estimate of thertmal derivative.
The coefficients in eack vector are the ones already presented in equéiBnfor the
forward finite differences and so, if the partiaridative is meant to be estimated
forward the'K vector is given by equation 44. Otherwise, if fratial derivative is
meant to be estimated backward the entries infKheector are taken from equation
(B14), leading to th& vector given by equation (B45).
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The partial derivatives of the function may be rastied numerically by taking the
partial derivatives of the multivariate collocatippnlynomial rearranged as the sum of
all the terms in as-dimensionalA array (first line of development B46). These farti
Each'K vector must have siz&+1 in its i" dimension and size 1 in every other
dimension. While taking the partial derivatives théimensionalD array works as an
array of constants and thus the process is siragltb the second line of development
(B46). Eachk only occurs in the relatéd vector of coefficients. Therefore, from the

basic rules of derivation the process is simplitiedhe third line of development (B46).
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Theforward andbackwardvectors of coefficients fai’/ok°(K) were already presented
in equation (B44) and equation (B45). Tleeward vectors of coefficients for partial



derivatives of order 1 to 5 are presented in equnati(B47) to (B51). Théackward
vectors of coefficients for partial derivativesafler 1 to 5 are presented in equations
(B52) to (B56).

Forward vectors of coefficients
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Two further upgrades may be added to the numesaation for the partial derivatives
previously shown in equation (B46). These are mteskin equation (B57). One of the
upgrades is that the partial derivatives may banased fory at ji,jo,..., Steps away
,,,,,, o In order to set where the partial derivatives @raluated th& vector of
coefficients must be estimated forj;. So, besides zerd; may also be any positive
integer for the forward formula or any negativeeger for the backward formula.
However, computationally, as software does not stippegative indices for data array
entries, the negative integer for the backward tdanis replaced by its absolute value.
Estimating the partial derivatives la0 may be advantageous in the current case for
which partial derivatives are intended to be usethe Taylor expansion of the model.
This way, if §; is selected to be a fraction bf (h=xy-%3) ji may be selected to be
anywhere in betweer, andx,. Nevertheless, it must be taken care not tasetuch
lower or higher than 1 as this brings error inte tlumerical estimates on the account of
being in a denominator raised to high powers. Tieroupgrade is that to estimate a
partial derivative of orde); it must be taken at least= 6; steps. Then, the accuracy of
the estimate may be increased if it is taken a rmurobsteps phigher than thé; order
of the derivative.
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