Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year 2.756
  • CiteScore value: 2.76 CiteScore 2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H index value: 41 Scimago H index 41
Volume 9, issue 4 | Copyright
Ocean Sci., 9, 683-694, 2013
https://doi.org/10.5194/os-9-683-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jul 2013

Research article | 30 Jul 2013

Comparing historical and modern methods of sea surface temperature measurement – Part 1: Review of methods, field comparisons and dataset adjustments

J. B. R. Matthews J. B. R. Matthews
  • School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada

Abstract. Sea surface temperature (SST) has been obtained from a variety of different platforms, instruments and depths over the past 150 yr. Modern-day platforms include ships, moored and drifting buoys and satellites. Shipboard methods include temperature measurement of seawater sampled by bucket and flowing through engine cooling water intakes. Here I review SST measurement methods, studies analysing shipboard methods by field or lab experiment and adjustments applied to historical SST datasets to account for variable methods. In general, bucket temperatures have been found to average a few tenths of a °C cooler than simultaneous engine intake temperatures. Field and lab experiments demonstrate that cooling of bucket samples prior to measurement provides a plausible explanation for negative average bucket-intake differences. These can also be credibly attributed to systematic errors in intake temperatures, which have been found to average overly-warm by >0.5 °C on some vessels. However, the precise origin of non-zero average bucket-intake differences reported in field studies is often unclear, given that additional temperatures to those from the buckets and intakes have rarely been obtained. Supplementary accurate in situ temperatures are required to reveal individual errors in bucket and intake temperatures, and the role of near-surface temperature gradients. There is a need for further field experiments of the type reported in Part 2 to address this and other limitations of previous studies.

Publications Copernicus
Download
Citation
Share